Double resonant absorption measurement of acetylene symmetric vibrational states probed with cavity ring down spectroscopy.

نویسندگان

  • J Karhu
  • J Nauta
  • M Vainio
  • M Metsälä
  • S Hoekstra
  • L Halonen
چکیده

A novel mid-infrared/near-infrared double resonant absorption setup for studying infrared-inactive vibrational states is presented. A strong vibrational transition in the mid-infrared region is excited using an idler beam from a singly resonant continuous-wave optical parametric oscillator, to populate an intermediate vibrational state. High output power of the optical parametric oscillator and the strength of the mid-infrared transition result in efficient population transfer to the intermediate state, which allows measuring secondary transitions from this state with a high signal-to-noise ratio. A secondary, near-infrared transition from the intermediate state is probed using cavity ring-down spectroscopy, which provides high sensitivity in this wavelength region. Due to the narrow linewidths of the excitation sources, the rovibrational lines of the secondary transition are measured with sub-Doppler resolution. The setup is used to access a previously unreported symmetric vibrational state of acetylene, ν1+ν2+ν3+ν4 (1)+ν5 (-1) in the normal mode notation. Single-photon transitions to this state from the vibrational ground state are forbidden. Ten lines of the newly measured state are observed and fitted with the linear least-squares method to extract the band parameters. The vibrational term value was measured to be at 9775.0018(45) cm(-1), the rotational parameter B was 1.162 222(37) cm(-1), and the quartic centrifugal distortion parameter D was 3.998(62) × 10(-6) cm(-1), where the numbers in the parenthesis are one-standard errors in the least significant digits.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cavity-enhanced laser spectroscopic studies of vibrational overtones of acetylene

This thesis contains five experimental spectroscopic studies that probe the vibration–rotation energy level structure of acetylene and some of its isotopologues. The emphasis is on the development of laser spectroscopic methods for high-resolution molecular spectroscopy. Three of the experiments use cavity ringdown spectroscopy. One is a standard setup that employs a non-frequency stabilised co...

متن کامل

Molecular elimination of Br2 in 248 nm photolysis of bromoform probed by using cavity ring-down absorption spectroscopy.

By using cavity ring-down spectroscopy technique, we have observed the channel leading to Br(2) molecular elimination following photodissociation of bromoform at 248 nm. A tunable laser beam, which is crossed perpendicular to the photolysis laser beam in a ring-down cell, is used to probe the Br(2) fragment in the B(3)Pi(ou)(+)-X(1)Sigma(g)(+) transition using the range 515-524 nm. The ring-dow...

متن کامل

Simultaneous measurement of quality factor and wavelength shift by phase shift microcavity ring down spectroscopy.

Optical resonant microcavities with ultra high quality factors are widely used for biosensing. Until now, the primary method of detection has been based upon tracking the resonant wavelength shift as a function of biodetection events. One of the sources of noise in all resonant-wavelength shift measurements is the noise due to intensity fluctuations of the laser source. An alternative approach ...

متن کامل

On the role of molecular clustering on infrared absorption line shapes of acetylene in a supersonic expansion

A supersonic expansion containing acetylene seeded into Ar and produced from a circular nozzle is investigated using CW/cavity ring down spectroscopy, in the 1.5 lm range. The results, also involving experiments with pure acetylene and acetylene-He expansions, as well as slit nozzles, demonstrate that the denser central section in the expansion is slightly heated by the formation of acetylene a...

متن کامل

Saturated-absorption cavity ring-down spectroscopy.

We report on a novel approach to cavity ring-down spectroscopy with the sample gas in saturated-absorption regime. This technique allows us to decouple and simultaneously retrieve the empty-cavity background and absorption signal, by means of a theoretical model that we developed and tested. The high sensitivity and frequency precision for spectroscopic applications are exploited to measure, fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 144 24  شماره 

صفحات  -

تاریخ انتشار 2016